Purpose of research.In modern ventilation and air conditioning systems (VAC), one of the main components is an automatic control system (ACS) which performs various functions and also provides highly efficient operation in the range from shutdown functions to centralized regulation and control of climate parameters (temperature, humidity, monitoring concentrations of harmful substances, air speed). The goal is to study a mathematical model of heat flow control of a supply and exhaust ventilation system with a builtin integrated recuperative heat exchanger for the purpose of utilization of low-temperature heat of ventilation gases and emissions with the associated production of thermoelectricity.Methods.To achieve these goals, we used methods of mathematical simulation and computational model development. The automatic control of VAC is based on the principle of feedback – regulation of processes by obtaining information from external sensors based on mathematical simulation of physical processes occurring in the building or structure serviced.Results.An experimental supply and exhaust system with a plate heat exchanger-recuperator operates in a quasi-steady heat transfer mode. Exhaust air removed from the room is used as a heating medium. At the same time, the system is controlled using an independent scheme of connection to the heat supply system. The air heated in the room is considered as an incompressible gas, the heat exchange between the heating and heated heat transfer media is a steadystate process, the turbulence of the heating and heated flow of heat transfer media is isotropic. The result of the study is a mathematical model of heat flow control in the supply and exhaust ventilation system with a builtin integrated heat exchanger-recuperator. The optimal values of the heat energy consumed and the parameters of the ventilation system operation are obtained.Conclusion.A mathematical model of heat flow control in a supply and exhaust ventilation system with a builtin integrated heat exchanger-recuperator is proposed and investigated. The optimal values of the consumed heat energy and the parameters of the ventilation system operation are obtained.