By using the field theoretic renormalization group technique together with the operator product expansion, simultaneous influence of the spatial parity violation and finite-time correlations of an electrically conductive turbulent environment on the inertial-range scaling behavior of correlation functions of a passively advected weak magnetic field is investigated within the corresponding generalized Kazantsev-Kraichnan model in the second order of the perturbation theory (in the two-loop approximation). The explicit dependence of the anomalous dimensions of the leading composite operators on the fixed point value of the parameter that controls the presence of finite-time correlations of the turbulent field as well as on the parameter that drives the amount of the spatial parity violation (helicity) in the system is found even in the case with the presence of the large-scale anisotropy. In accordance with the Kolmogorov's local isotropy restoration hypothesis, it is shown that, regardless of the amount of the spatial parity violation, the scaling properties of the model are always driven by the anomalous dimensions of the composite operators near the isotropic shell. The asymptotic (inertial-range) scaling form of all single-time two-point correlation functions of arbitrary order of the passively advected magnetic field is found. The explicit dependence of the corresponding scaling exponents on the helicity parameter as well as on the parameter that controls the finite-time velocity correlations is determined. It is shown that, regardless of the amount of the finite-time correlations of the given Gaussian turbulent environment, the presence of the spatial parity violation always leads to more negative values of the scaling exponents, i.e., to the more pronounced anomalous scaling of the magnetic correlation functions. At the same time, it is shown that the stronger the violation of spatial parity, the larger the anomalous behavior of magnetic correlations.
Read full abstract