Abstract

Using the field-theoretic renormalization group approach and the operator product expansion technique in the second order of the corresponding perturbative expansion, the influence of finite-time correlations of the turbulent velocity field on the scaling properties of the magnetic field correlation functions as well as on the anisotropy persistence deep inside the inertial range are investigated in the framework of the generalized Kazantsev-Kraichnan model of kinematic magnetohydrodynamic turbulence. Explicit two-loop expressions for the scaling exponents of the single-time two-point correlation functions of the magnetic field are derived and it is shown that the presence of the finite-time velocity correlations has a nontrivial impact on their inertial-range behavior and can lead, in general, to significantly more pronounced anomalous scaling of the magnetic field correlation functions in comparison to the rapid-change limit of the model, especially for the most interesting three-dimensional case. Moreover, by analyzing the asymptotic behavior of appropriate dimensionless ratios of the magnetic field correlation functions, it is also shown that the presence of finite-time correlations of the turbulent velocity field has a strong impact on the large-scale anisotropy persistence deep inside the inertial interval. Namely, it leads to a significant enhancement of the anisotropy persistence, again, especially in three spatial dimensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call