The infection of insects by the entomopathogenic fungus Aschersonia placenta depends on conidia. To identify proteins differentially expressed in A.placenta conidia vs mycelia, we performed a comparative proteomic analysis of A.placenta using 2-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF-MS). We detected 1022 2-DE protein spots in conidia and 1049 in mycelia and analyzed 48 (13 from conidia and 35 from mycelia) using MALDI-TOF-MS. Finally, we identified 28 proteins (7 from conidia and 21 from mycelia). The identified proteins exclusive to conidia included major proteins participating in oxidation-reduction processes and vegetative insecticidal protein 1 (Vip1), a protein that is likely involved in pathogenicity. The identified proteins exclusive to mycelia were those involved in biosynthesis and metabolism, including uridine diphosphate galactopyranose mutase, which might play key roles in hyphal morphogenesis. This report provides the first proteomic analysis of different developmental stages of an Aschersonia species. Although only a small number of proteins were identified, the data represent a useful foundation for future studies concerning the molecular basis of entomopathogenicity in the species A.placenta and in the genus Aschersonia.
Read full abstract