SummarySeveral proposals are explored for the hazard and intensity measure (IM) consistent selection of bidirectional ground motions to assess the performance of 3D structural models. Recent studies have shown the necessity of selecting records that thoroughly represent the seismicity at the site of interest, as well as the usefulness of efficient IMs capable of estimating the response of buildings with low scatter. However, the advances realized are mostly geared towards the structural analysis of 2D models. Few are the combined record, and IM selection approaches suggested expressly for nonlinear dynamic analysis of 3D structural models, especially when plan asymmetry and torsion sensitivity come into play. Conditional spectrum selection is leveraged and expanded here to offer a suite of approaches based on both scalar and vector IMs that convey information from two orthogonal horizontal components of the ground motion. Applications on multiple 3D building models highlight the importance of (a) employing the same IM for both record selection and response assessment and (b) maintaining hazard consistency in both horizontal components, when using either a scalar or a vector IM. All tested approaches that respect these conditions can be viable, yet the one based on the geometric mean of multiple spectral ordinates from both components over a period range seems to hold the most promise for general use.