Abstract

A realistic assessment of building economic losses and collapse induced by earthquakes requires the monitoring of several response measures, both story-specific and global. The prediction of such response measures benefits from using multiple ground motion intensity measures (IMs) that are, in general, correlated. To allow the inclusion of multiple IMs in the risk assessment process, it is necessary to have a practical tool that computes the vector-valued hazard of all such IMs at the building site. In this paper, vector-valued probabilistic seismic hazard analysis (VPSHA) is implemented here as a post-processor to scalar PSHA results. A group of candidate scalar and vector IMs based on spectral acceleration values, ratios of spectral acceleration values, and spectral accelerations averaged over a period range are defined and their hazard evaluated. These IMs are used as structural response predictors of three-dimensional (3-D) models of reinforced concrete buildings described in a companion paper ( Kohrangi et al. 2016 ).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.