The vase life of many cut flowers is often limited by bacterial occlusion of stem bases. In this study, we tested the efficacy of a novel antimicrobial agent, aqueous chlorine dioxide (ClO2), to extend the longevity of cut Gerbera flowers by reducing the number of bacteria in vase water. Commercially mature and freshly cut Gerbera jamesonii `Monarck' flowers were placed into clean vases containing deionized water and 0, 2, 5, 10, 20, and 50 μL·L-1 ClO2. Stems were then maintained in solutions at 21 ± 0.5 °C and 42 ± 11% relative humidity until the end of vase life. Inclusion of 2, 5, and 10 μL·L-1 ClO2 in vase water had beneficial effects on flower longevity. For instance, treatment with 5 and 10 μL·L-1 ClO2 extended flower longevity by 1.4-fold or 3.7 days, as compared to control flowers (0 μL·L-1 ClO2). In contrast, exposure to the higher concentrations of 20 and 50 μL·L-1 ClO2 did not extend flower vase life. Relative to control flowers, treatment with 10 μL·L-1 ClO2 delayed the onset of detectable bacterial colonization of vase solutions from day 3 to day 6 of vase life. However, this ClO2 treatment did not reduce the number of bacteria that subsequently accumulated in vase water as compared to control flowers. Treatment with 10 μL·L-1 ClO2 also increased rates of solution uptake by stems and reduced the loss of flower fresh weight over time. These results highlight the potential use of ClO2 treatments to extend the postharvest longevity of Gerbera flowers.
Read full abstract