BackgroundTumour vascular density assessed from CD-31 immunohistochemistry (IHC) images has previously been shown to have prognostic value in breast cancer. Current methods to measure vascular density, however, are time-consuming, suffer from high inter-observer variability and are limited in describing the complex tumour vasculature morphometry.MethodsWe propose a method for automatically measuring a range of vascular parameters from CD-31 IHC images, which together provide a detailed description of the vasculature morphology. We first used a U-Net based convolutional neural network, trained and validated using 36 partially annotated whole slide images from 27 patients, to segment vessel structures and tumour regions from which the measurements are taken. The model also segments the vascular smooth muscle, benign epithelium, adipose tissue, stroma, lymphocyte clusters, nerves and CD-31 positive leukocytes, and we applied it to an additional 21 images from 15 patients. Using these segmentations, we investigated the relationship between the various tissue types and the vasculature and studied the relationship of various vascular parameters with clinical parameters. We also performed a 3D histology analysis on a separate tumour sample as a proof of principle, providing a more comprehensive visualization of vasculature morphology compared to the standard 2D cross-section of a tissue sample.ResultsUsing two-way cross-validation, we show that vessels were accurately segmented, with Dice scores of 0.875 and 0.856, and were accurately identified, with F1 scores of 0.777 and 0.748. All vascular parameters exhibit strong (r>0.70.7$$\\end{document}]]>) and significant (p<0.001) correlations with measurements taken from the manual ground truth vessel segmentations. A significant relationship between the major/minor axis ratio, a measure of elongation, and the tumour grade was found.ConclusionOur proposed method shows promise as a tool for studying the tumour vasculature and its relationship with surrounding cells and tissue types. Furthermore, the correlation with tumour grade highlights the clinical relevance of our approach. These findings suggest that our method could have substantial implications for improving prognostic assessments and personalizing therapeutic strategies in breast cancer treatment.
Read full abstract