Abstract

Extracellular vesicles (EVs) and neutrophil extracellular traps (NETs) are pivotal bioactive structures involved in various processes including inflammation. Herein we report the interactions between EVs and NETs during murine endotoxemia studied in situ directly in the vasculature (cremaster muscle, liver sinusoids) using intravital microscopy (IVM). We captured NETs and EV release in real time by both non- and polarized neutrophils in liver but not in cremaster vasculature. When comparing numbers of circulating EVs of various origin (nanoparticle tracking analysis—NTA, flow cytometry) with those interacting with endothelium and NETs (IVM) we observed that whereas platelet and monocyte/macrophage-derived EVs dominate in blood and peritoneal lavage, respectively, mostly neutrophil-derived EVs interact with the vascular lining, NETs and leukocytes. Despite the interaction, NETs do not affect EV formation as NET release inhibition did not alter EV release. However, EVs inhibit NETs formation and in particular, erythrocyte-derived EVs downregulate NET release and this effect is mediated via Siglec-E-dependent interactions with neutrophils. Overall, we report that EVs are present in NETs in vivo and they do modulate their release but the process in not bidirectional. Moreover, EVs isolated from body fluids might not reflect their importance in direct endothelial- and leukocyte-related interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.