A variable speed of light (VSL) cosmology is described in which the causal mechanism of generating primordial perturbations is achieved by varying the speed of light in a primordial epoch. This yields an alternative to inflation for explaining the formation of the cosmic microwave background (CMB) and the large scale structure (LSS) of the universe. The initial value horizon and flatness problems in cosmology are solved. The model predicts primordial scalar and tensor fluctuation spectral indices $n_s=0.96$ and $n_t=- 0.04$, respectively. We make use of the $\delta{\cal N}$ formalism to identify signatures of primordial nonlinear fluctuations, and this allows the VSL model to be distinguished from inflationary models. In particular, we find that the parameter $f_{\rm NL}=5$ in the variable speed of light cosmology. The value of the parameter $g_{\rm NL}$ evolves during the primordial era and shows a running behavior.
Read full abstract