In this paper we investigate a system of coupled inequalities consisting of a variational–hemivariational inequality and a quasi-hemivariational inequality on Banach spaces. The approach is topological, and a wide variety of existence results is established for both bounded and unbounded constraint sets in real reflexive Banach spaces. Applications to Contact Mechanics are provided in the last section of the paper. More precisely, we consider a contact model with (possibly) multivalued constitutive law whose variational formulation leads to a coupled system of inequalities. The weak solvability of the problem is proved via employing the theoretical results obtained in the previous section. The novelty of our approach comes from the fact that we consider two potential contact zones and the variational formulation allows us to determine simultaneously the displacement field and the Cauchy stress tensor.