Abstract
In this paper we investigate a system of coupled inequalities consisting of a variational–hemivariational inequality and a quasi-hemivariational inequality on Banach spaces. The approach is topological, and a wide variety of existence results is established for both bounded and unbounded constraint sets in real reflexive Banach spaces. Applications to Contact Mechanics are provided in the last section of the paper. More precisely, we consider a contact model with (possibly) multivalued constitutive law whose variational formulation leads to a coupled system of inequalities. The weak solvability of the problem is proved via employing the theoretical results obtained in the previous section. The novelty of our approach comes from the fact that we consider two potential contact zones and the variational formulation allows us to determine simultaneously the displacement field and the Cauchy stress tensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.