Basket trials pool histologic indications sharing molecular pathophysiology, improving development efficiency. Currently, basket trials have been confirmatory only for exceptional therapies. Our previous randomized basket design may be generally suitable in the resource-intensive confirmatory phase, maintains high power even with modest effect sizes, and provides nearly k-fold increased efficiency for k indications, but controls false positives for the pooled result only. Since family wise error rate by indications may sometimes be required, we now simulate a variant of this basket design controlling family wise error rate at 0.025k, the total family wise error rate of k separate randomized trials. We simulated this modified design under numerous scenarios varying design parameters. Only designs controlling family wise error rate and minimizing estimation bias were allowable. Optimal performance results when . We report efficiency (expected # true positives/expected sample size) relative to k parallel studies, at 90% power ("uncorrected") or at the power achieved in the basket trial ("corrected," because conventional designs could also increase efficiency by sacrificing power). Efficiency and power (percentage active indications identified) improve with a higher percentage of initial indications active. Up to 92% uncorrected and 38% corrected efficiency improvement is possible. Even under family wise error rate control, randomized confirmatory basket trials substantially improve development efficiency. Initial indication selection is critical.
Read full abstract