Purpose: The aim of this study was to investigate the cerebral blood flow (CBF) variations during brain metastases (BMs) radiotherapy (RT) applying with magnetic resonance (MR) 3D-arterial spin labeling (ASL). Materials and Methods: A total of 26 BM patients with 54 tumors were retrospectively enrolled. MR examinations were performed before and during RT (30–50 Gy) with a total dose of 36–60 Gy (12–30 fractions) including contrast-enhanced T1-weighted, T2 Flair, and 3D-ASL images. The relationship between CBF changes and the largest cross-sectional area changes in BMs was investigated. And CBF changes in BMs, normal brain tissue, and peritumoral edema areas were analyzed under different dose gradients that were divided into 10 Gy intervals. Results: The largest cross-sectional areas and CBF of 54 BMs decreased by 26.46% and 29.64%, respectively, during RT (p < 0.05), but there was no correlation between the 2 changes (p > 0.05). The rates of CBF decrease in BMs were 33.75%, 24.61%, and 27.55% at 30–40, 40–50, and >50 Gy, respectively (p < 0.05). In normal brain tissue with dose gradients of 0–10, 10–20, 20–30, 30–40, 40–50, and >50 Gy, the CBF decreased by 7.65%, 11.12%, 18.42%, 20.23%, 19.79%, and 17.89%, respectively (p < 0.05). The CBF decreases reached a maximum at 30–40 Gy in normal brain tissue as well as BMs. In contrast, the CBF decreases of peritumoral edema areas increased as the dose gradients increased. Moreover, the CBF changes of BMs were more notable than those in normal brain tissue and peritumoral edema areas. Conclusion: CBF changes can be feasibly assessed in different brain regions during RT based on 3D-ASL. The changes should be considered as a critical factor to determine the personal radiation dose for BMs, normal brain tissue, and peritumoral edema areas.
Read full abstract