Abstract

Combining electroencephalography (EEG) to functional near-infrared spectroscopy (fNIRS) is a promising technique that has gained momentum thanks to their complementarity. While EEG measures the electrical activity of the brain, fNIRS records the variations in cerebral blood flow and related hemoglobin concentrations. However, both modalities are typically contaminated with artefacts. Muscle and eye artefacts, affect the EEG signals, while hemodynamic and oxygenation changes in the extracerebral compartment due to systemic changes (superficial layer) corrupt the fNIRS signals. Moreover, both signals are sensitive to sensor motion artefacts characterized by large amplitude. There are several well-established methods for removing artefacts for both modalities. The objective of this paper is to apply a common approach to denoise both EEG and fNIRS signals. Indeed Artifact Subspace Reconstruction (ASR) method, which is an automatic, online-capable and efficient method for deleting transient or large-amplitude EEG artefacts, can be a good alternative to also denoise fNIRS signals. In this paper, we first propose, a new more comprehensive formulation of ASR. Then, we study the effectiveness of the method in denoising both the EEG and fNIRS signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.