Abstract Infantile epileptic spasms syndrome is a severe epilepsy of infancy that is often associated with focal malformations of cortical development. This study aimed to elucidate the genetic landscape and histopathologic aetiologies of infantile epileptic spasms syndrome due to focal malformations of cortical development requiring surgery. Fifty-nine children with a history of Infantile epileptic spasms syndrome and focal malformations of cortical development on MRI were studied. Genetic testing of resected brain tissue was performed by high coverage targeted panel sequencing or exome sequencing. Histopathology and magnetic resonance imaging (MRI) were reviewed, and integrated clinico-pathological diagnoses were established. A genetic diagnosis was achieved in 47 children (80% of cohort). Germline pathogenic variants were identified in 27/59 (46%) children, in TSC2 (x19), DEPDC5 (x2), CDKL5 (x2), NPRL3 (x1), FGFR1 (x1), TSC1 (x1), and one child with both a TUBB2A/TUBB2B deletion and a pathogenic variant in COL4A1 (x1). Pathogenic brain somatic variants were identified in 21/59 (36%) children, in SLC35A2 (x9), PIK3CA (x3), AKT3 (x2), TSC2 (x2), MTOR (x2), OFD1 (x1), TSC1 (x1) and DEPDC5 (x1). One child had “two-hit” diagnosis, with both germline and somatic pathogenic DEPDC5 variants in trans. Multimodal data integration resulted in clinical diagnostic reclassifications in 24% of children, emphasizing the importance of combining genetic, histopathologic, and imaging findings. Mammalian target of rapamycin (mTOR) pathway variants were identified in most children with tuberous sclerosis or focal cortical dysplasia type II. All nine children with somatic SLC35A2 variants in brain were reclassified to mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy. Somatic mosaicism was a major cause of focal cortical dysplasia type II/hemimegalencephaly (81%) and mild malformation of cortical development with oligodendroglial hyperplasia (100%). The genetic landscape of infantile epileptic spasms syndrome due to focal malformations comprises germline and somatic variants in a range of genes, with mTORopathies and SLC35A2-related mild malformation of cortical development with oligodendroglial hyperplasia being the major causes. Multimodal data integration incorporating genetic data aids in optimizing diagnostic pathways and can guide surgical decision-making and inform future research and therapeutic interventions.
Read full abstract