Solid oxide fuel cells (SOFCs) are a major candidate technology for clean energy conversion because of their high efficiency and fuel flexibility.1 The development of intermediate-temperature (500–750 °C) SOFCs requires electrolytes with high oxide ion conductivity (exceeding 10−2 S cm−1 assuming an electrolyte thickness of 15 μm1). This conductivity, in turn, necessitates enhanced understanding of the mechanisms of oxide ion charge carrier creation and mobility at an atomic level. The charge carriers are most commonly oxygen vacancies in fluorites2, 3 and perovskites.3, 4 There are fewer examples of interstitial-oxygen-based conductors such as the apatites5, 6 and La2Mo2O9-based materials,7–9 so information on how these excess anion defects are accommodated and the factors controlling their mobility is important.
Read full abstract