Long-standing, continuous blurring and controversies in the field of phylogenetic interspecies relations, associated with insufficient explanations for dynamics and variability of speeds of evolution in mammals, hint at a crucial missing link. It has been suggested that transgenerational epigenetic inheritance and the concealed mechanisms behind play a distinct role in mammalian evolution. Here, a comprehensive sequence alignment approach in hominid species, i.e., Homo sapiens, Homo neanderthalensis, Denisovan human, Pan troglodytes, Pan paniscus, Gorilla gorilla, and Pongo pygmaeus, comprising conserved CpG islands of housekeeping genes, uncover evidence for a distinct variability of CpG dinucleotides. Applying solely these evolutionary consistent and inconsistent CpG sites in a classic phylogenetic analysis, calibrated by the divergence time point of the common chimpanzee (P. troglodytes) and the bonobo or pygmy chimpanzee (P. paniscus), a "phylo-epigenetic" tree has been generated, which precisely recapitulates branch points and branch lengths, i.e., divergence events and relations, as they have been broadly suggested in the current literature, based on comprehensive molecular phylogenomics and fossil records of many decades. It is suggested here that CpG dinucleotide changes at CpG islands are of superior importance for evolutionary developments. These changes are successfully inherited through the germ line, determining emerging methylation profiles, and they are a central component of transgenerational epigenetic inheritance. It is hidden in the DNA, what will happen on it later.
Read full abstract