Visible and near-infrared (vis-NIR) spectroscopy has proven to be a straightforward method for sample preparation and scaling soil testing, while the increasing availability of high-resolution remote sensing (RS) data has further facilitated the understanding of spatial variability in soil organic carbon (SOC) and total nitrogen (TN) across landscapes. However, the impact of combining vis-NIR spectroscopy with high-resolution RS data for SOC and TN prediction remains an open question. This study evaluated the effects of incorporating a high-resolution LiDAR-derived digital elevation model (DEM) and a medium-resolution SRTM-derived DEM with vis-NIR spectroscopy for predicting SOC and TN in peatlands. A total of 57 soil cores, comprising 262 samples from various horizons (<2 m), were collected and analysed for SOC and TN content using traditional methods and ASD Fieldspec® 4. The 262 observations, along with elevation data from LiDAR and SRTM, were divided into 80% training and 20% testing datasets. By employing the Cubist modelling approach, the results demonstrated that incorporating high-resolution LiDAR data with vis-NIR spectra improved predictions of SOC (RMSE: 4.60%, RPIQ: 9.00) and TN (RMSE: 3.06 g kg−1, RPIQ: 7.05). In conclusion, the integration of LiDAR and soil spectroscopy holds significant potential for enhancing soil mapping and promoting sustainable soil management.
Read full abstract