The effects of climate on infectious diseases could influence the health impacts, particularly in children in countries with the unfair socioeconomic conditions. In a prospective cohort of 461 children under 16-years-of-age in Varanasi city, India, the association of maximum-temperature (Tmax), relative humidity (RH), absolute humidity (AH), rainfall (RF), wind-speed (WS), and solar radiation (SLR) with prevalent infectious diseases (Diarrhea, Common cold and flu, Pneumonia, Skin-disease and Malaria, and Dengue) was examined using binomial-regression, adjusting for confounders and effect modifiers (socioeconomic-status; SES and child anthropometry), from January 2017 to January 2020. Attributable-fraction (AFx) was calculated due to each climate variable for each infectious disease. The result showed that each unit (1 °C) rise in Tmax was associated with an increase in diarrhea and skin-disease cases by 3.97% (95% CI: 2.92, 5.02) and 3.94% (95% CI: 1.67, 6.22), respectively, whereas, a unit decline in Tmax was associated with an increase in cold and flu cases by 3.87% (95% CI: 2.97, 4.76). Rise in humidity (RH) was associated with increase in cases of cold and flu by 0.73% (95% CI: 0.38, 1.08) and malaria (AH) by 7.19% (95% CI: 1.51, 12.87) while each unit (1 g/m3) decrease in humidity (AH) observed increase in pneumonia cases by 3.02% (95% CI: 0.75, 5.3). WS was positively associated with diarrhea (14.16%; 95% CI: 6.52, 21.80) and negatively with dengue (17.40%; 12.32, 22.48) cases for each unit change (kmph). RF showed marginal association while SLR showed no association at all. The combined AFx due to climatic factors ranged from 9 to 18%. SES and anthropometric parameters modified the climate-morbidity association in children with a high proportion of children found suffering from stunting, wasting, and underweight conditions. Findings from this study draw the attention of government and policymakers to prioritize effective measures for child health as the present association may increase disease burden in the future under climate-change scenarios in already malnourished paediatric population through multiple pathways.