Abstract Conjugate heat transfer analysis is carried out on the internal surface of the first-stage nozzle guide vane of a gas turbine, which has both impingement and film cooling holes. The mainstream flow Reynolds number and internal coolant flow Reynolds number systematically changed and its effect on internal local surface temperature variation is studied. It is found that an increase in the coolant mass flow rate causes a non-uniform decrease in the local internal surface temperature. The external film coolant jet-lift off and internal impingement cross-flow are significant contributors to the non-uniform variation in surface temperature. It is also observed that the leading edge regions are prone to jet lift-off, whereas the tip regions of the suction surface are prone to self-induced cross-flow, due to which hot patches are formed in these regions. Hot patches are observed near the hub regions of a pressure surface due to the reduced film thickness on the external surface. From these observations it is concluded that local values of internal surface temperature are differently affected in different regions of the vane surface for a given combination of mainstream and coolant flow rates. Therefore, the conventional method of obtaining the internal temperature distributions by considering generalized geometries may not yield accurate solutions, in predicting the life of the nozzle guide vane.
Read full abstract