Abstract

The lean combustion chamber of low NOx emission engines has a short distance between combustion outlet and nozzle guide vanes (NGVs), with strong swirlers located upstream of the turbine inlet to from steady circulation in the combustion region. Although the lean combustion design benefits emission control, it complicates the turbine’s aerodynamics and heat transfer. The strong swirling flow will influence the near-wall flow field where film cooling acts. This research investigates the influence of inlet swirl on the film cooling of cascades. The test cascades are a 1.95 scale model based on the GE-E3 profile, with an inlet Mach number of 0.1 and Reynolds number of 1.48 × 105. Film cooling effectiveness is measured with pressure-sensitive paint (PSP) technology, with nitrogen simulating coolant at a density ratio of near to 1.0. Two neighboring passages are investigated simultaneously, so that pressure and suction side the film cooling effectiveness can be compared. The inlet swirl is produced by a swirler placed upstream, near the inlet, with five positions along the pitchwise direction. These are as follows: blade 1 aligned, passage 1–2 aligned, blade 2 aligned, passage 2–3 aligned and blade 3 aligned. According to the experimental results, the near-hub region is strongly influenced by inlet swirl, where the averaged film cooling effectiveness can differ by up to 12% between the neighboring blades. At the spanwise location Z/Span = 0.7, when the inlet swirl is moved from blade 1 aligned (position 5) to blade 2 aligned (position 3), the film cooling effectiveness in a small area near the endwall can change by up to 100%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.