Vanadium-titanium (V–Ti) magnetite tailings contain toxic metals that could potentially pollute the surrounding environment. However, the impact of beneficiation agents, an integral part of mining activities, on the dynamics of V and the microbial community composition in tailings remains unclear. To fill this knowledge gap, we compared the physicochemical properties and microbial community structure of V–Ti magnetite tailings under different environmental conditions, including illumination, temperature, and residual beneficiation agents (salicylhydroxamic acid, sodium isobutyl xanthate, and benzyl arsonic acid) during a 28-day reaction. The results revealed that beneficiation agents exacerbated the acidification of the tailings and the release of V, among which benzyl arsonic acid had the greatest impact. The concentration of soluble V in the leachate of tailings with benzyl arsonic acid was 6.4 times higher than that with deionized water. Moreover, illumination, high temperatures, and beneficiation agents contributed to the reduction of V in V-containing tailings. High-throughput sequencing revealed that Thiobacillus and Limnohabitans adapted to the tailings environment. Proteobacteria was the most diverse phylum, and the relative abundance was 85.0%–99.1%. Desulfovibrio, Thiobacillus, and Limnohabitans survived in the V–Ti magnetite tailings with residual beneficiation agents. These microorganisms could contribute to the development of bioremediation technologies. The main factors affecting the diversity and composition of bacteria in the tailings were Fe, Mn, V, SO42−, total nitrogen, and pH of the tailings. Illumination inhibited microbial community abundance, while the high temperature (39.5 °C) stimulated microbial community abundance. Overall, this study strengthens the understanding of the geochemical cycling of V in tailings influenced by residual beneficiation agents and the application of inherent microbial techniques in the remediation of tailing-affected environments.
Read full abstract