During recent decades active particles have attracted an incipient attention as they have been observed in a broad class of scenarios, ranging from bacterial suspension in living systems to artificial swimmers in nonequilibirum systems. The main feature of these particles is that they are able to gain kinetic energy from the environment, which is widely modeled by a stochastic process due to both (Gaussian) white and Ornstein-Uhlenbeck noises. In the present work, we study the nonlinear dynamics of the forced, time-delayed Duffing oscillator subject to these noises, paying special attention to their impact upon the maximum oscillations amplitude and characteristic frequency of the steady state for different values of the time delay and the driving force. Overall, our results indicate that the role of the time delay is substantially modified with respect to the situation without noise. For instance, we show that the oscillations amplitude grows with increasing noise strength when the time delay acts as a damping term in absence of noise, whereas the trajectories eventually become aperiodic when the oscillations are sustained by the time delay. In short, the interplay among the noises, forcing, and time delay gives rise to a rich dynamics: a regular and periodic motion is destroyed or restored owing to the competition between the noise and the driving force depending on time delay values, whereas an erratic motion insensitive to the driving force emerges when the time delay makes the motion aperiodic. Interestingly, we also show that, for a sufficient noise strength and forcing amplitude, an approximately periodic interwell motion is promoted by means of stochastic resonance.
Read full abstract