The interaction products of normal cucurbit[n]urils (n = 7, 8; Q[7] Q[8]) and a sym- tetramethyl-substituted cucurbit[6]uril derivative (TMeQ[6]) with the hydrochloride salts of 2,4-diaminoazobenzene (g·HCl) were investigated in aqueous solution using 1H NMR spectroscopy, electronic absorption spectroscopy, as well as single crystal X-ray diffraction. The 1H NMR spectra analysis established a basic interaction model in which inclusion complexes with a host:guest ratio of 1:1 form for the TMeQ[6] and Q[7] cases, while they form with a host:guest ratio of 1:2 for the Q[8] case. Commonly, the hosts selectively bound to the phenyl moieties of the guests. Absorption spectrophotometric analysis in aqueous solution defined the stability of the host–guest inclusion complexes at pH 3.2. Quantitatively, at this pH, complexes with a host:guest ratio of 1:1—those with smaller hosts TMeQ[6] and Q[7]—formed with logK values between 6 and 7. That with host Q[8] and a host:guest ratio of 1:2 formed with a logK value of 10.8. Single crystal X-ray structures of the inclusion complexes TMeQ[6]–g·HCl and Q[8]–g·HCl showed the phenyl moiety of the guest inserted into the host cavity. This result supports the solution-based 1H NMR spectroscopic study.
Read full abstract