A polarizable solute model, based on the empirical valence bond approach, is developed and applied to electron transfer (ET) reactions in polarizable and flexible water solvents. The polarization effect is investigated in comparison with a nonpolarizable solute and solvent model. With free energy curves constructed by a molecular dynamics simulation, the activation energy barrier and the reorganization energy related to ET processes are investigated. The present simulation results show that the activation energy barrier becomes larger in the polarizable model than in the nonpolarizable model and that this makes the ET rate slower than that with the nonpolarizable model. It is shown that the effect of the electronic energy difference of solute molecule on free energy profiles is remarkable and that, corresponding to this effect, the reorganization energy is significantly modified. These results indicate that the process of solvent polarization by the polarized solute to enhance the solute-solvent interaction is a key factor and that treating the polarization of both solute and solvent at the same time is essential. Also, the polarization effect on the diffusive motion of the solute molecule in the polarization solvent is studied. The polarized solute molecule shows slower diffusive motion compared with that in the nonpolarizable model.
Read full abstract