Abstract
Charge transfer due to collisions of ground state ${\mathrm{O}}^{3+}(2{s}^{2}2p{\phantom{\rule{0.2em}{0ex}}}^{2}{P}^{o})$ ions with molecular hydrogen are investigated using the quantum-mechanical molecular-orbital (QMO) coupled-channel method. The QMO calculations utilize $ab$ initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach for a representative range of orientation angles and diatom internuclear separations. Vibrationally resolved cross sections for nondissociative single electron capture are obtained for energies between 0.1 eV∕u and 10 keV∕u for ${\mathrm{H}}_{2}$ in its ground vibrational level using the infinite order sudden approximation (IOSA). Two further approximations are considered in which the electronic radial couplings are assumed to be independent of the diatom stretching. In the first case, vibrational motion is taken into account by multiplying the electronic radial couplings by Franck-Condon (FC) ionization factors while in the second, vibrational motion is completely neglected. We refer to these two approaches as the vibrational sudden approximation (VSA) and the electronic approximation (EA), respectively. In the latter, the resulting cross sections for electronic transitions are multiplied by FC factors to obtain relative vibrationally resolved cross sections which are independent of the collision energy (the centroid approximation). Comparison with existing experimental data for total and electronic state-selective cross sections shows best agreement with IOSA and VSA, but discrepancies for EA. The triplet-singlet electronic cross section ratio reveals a departure at low collision energies from the statistical value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.