In the framework of the design activities for the ITER Neutral Beam Injector (NBI) and full power neutral beam injector prototype, the vacuum vessel has been designed concurrently with the whole other components, and in particular with the Beam Source (BS) and the large Cryopumps, that strongly conditioned the design. The definition of the interfaces has been focused on the design for the 1 MV neutral beam injector prototype, anyway keeping to the absolute minimum the differences with respect to the ITER NBI Vessel. The Vacuum Vessel is composed of two separate parts which shall be welded on site: the Beam Line Vessel (BLV) and the Beam Source Vessel (BSV). Three main bolted lids are foreseen for horizontal and vertical access to the internal components. The vessel is composed of double wall and ribs in critical areas to minimize deformations and stresses under the atmospheric pressure load. New concepts for the Beam Source Support, Positioning and Tilting Systems have been developed and an engineering design has been carried out, able to satisfy precise requirements on stiffness, accuracy of regulation, vacuum compatibility, electric insulation and Remote Handling operation. These components and the BS have been fully integrated inside the BSV by means of support structures and vacuum feedthroughs for mechanical links allowing the transmission of motion and forces. The interfaces between the BLV and the Beam Line Components (BLCs) have been revised to be compatible with the new vessel design and the BLCs support frames. Further interfaces with the high voltage bushing, the vacuum pumping and the diagnostic systems have been considered. The number and the position of the diagnostic viewports were identified taking into account both diagnostics and structural requirements. Static, buckling and seismic analyses, based on EN 13445, have been performed considering operative and exceptional load cases. Requirements, criteria and design details are presented in the paper together with the main analyses results.
Read full abstract