The minimal dark matter (MDM) scenario is a very simple framework of physics beyond the Standard Model (SM) to supplement the SM with a DM candidate. In this paper, we consider an ultraviolet completion of the scenario to an SO(10) grand unified theory, which is a well-motivated framework in light of the neutrino oscillation data. Considering various phenomenological constraints, such as the successful SM gauge coupling unification, the proton stability, and the direct/indirect DM detection constraints as well as the absolute electroweak vacuum stability, we have first singled out the minimal particle content of the MDM scenario at low energies. In addition to the SM particle content, our MDM scenario includes an SU(2)$_L$ quintet scalar DM with a 9.4 TeV mass and three degenerate color-octet scalars with mass of 2 TeV. We then have found a way to embed the minimal particle content into SO(10) representations, in which a remnant $Z_2$ symmetry after the SO(10) symmetry breaking ensures the stability of the DM particle. The production cross section of the color-octet scalars at the Large Hadron Collider is found to be a few orders of magnitude below the current experimental bound.