Fused silica is an excellent window material widely used in ultraviolet transmission optical system. Crack-free ductile dry grinding is a novel method for the efficient fabrication of fused silica. The grinding temperature field has an important influence on the grinding process. However, most previous studies assumed that the grinding temperature was independent of the wheel’s wear. In this paper, a temperature field model of the ductile dry grinding of fused silica is developed based on wheel wear topographies. Simulated wheel topographies with the same statistical parameters as the realistic wheel wear topographies are reconstructed based on the convolution filtering and Johnson transformation algorithm. The theoretical temperature field is the superposition of the thermal effects induced by effective cutting grain point heat sources extracted from the simulated wheel topographies. The theoretical prediction accuracy of the wheel-workpiece contact zone is validated by an infrared radiation transmission method. This model not only provides opportunity to explore the material removal mechanisms and improve the surface generation quality of fused silica during the wear process of the wheel, but also could be extended to provide the basis for the utilization of grinding heat or prevention of grinding thermal damage for other isotropic materials.
Read full abstract