Trehalose transport in Escherichia coli after growth at low osmolarity is mediated by enzyme IITre of the phosphotransferase system (W. Boos, U. Ehmann, H. Forkl, W. Klein, M. Rimmele, and P. Postma, J. Bacteriol. 172:3450-3461, 1990). The apparent Km (16 microM) of trehalose uptake is low. Since trehalose is a good source of carbon and the apparent affinity of the uptake system is high, it was surprising that the disaccharide trehalose [O-alpha-D-glucosyl(1-1)-alpha-D-glucoside] has no problems diffusing through the outer membrane at high enough rates to allow full growth, particularly at low substrate concentrations. Here we show that induction of the maltose regulon is required for efficient utilization of trehalose. malT mutants that lack expression of all maltose genes, as well as lamB mutants that lack only the lambda receptor (maltoporin), still grow on trehalose at the usual high (10 mM) trehalose concentrations in agar plates, but they exhibit the half-maximal rate of trehalose uptake at concentrations that are 50-fold higher than in the wild-type (malT+) strain. The maltose system is induced by trehalose to about 30% of the fully induced level reached when grown in the presence of maltose in a malT+ strain or when grown on glycerol in a maltose-constitutive strain [malT(Con)]. The 30% level of maximal expression is sufficient for maximal trehalose utilization, since there is no difference in the concentration of trehalose required for the half-maximal rate of uptake in trehalose-grown strains with the wild-type gene (malT+) or with strains constitutive for the maltose system [malT(Con)]. In contrast, when the expression of the lambda receptor is reduced to less than 20% of the maximal level, trehalose uptake becomes less efficient. Induction of the maltose system by trehalose requires metabolism of trehalose. Mutants lacking amylotrehalase, the key enzyme in trehalose utilization, accumulate trehalose but do not induce the maltose system.
Read full abstract