Drip irrigation under film mulching is widely promoted to replace traditional border irrigation in order to meet water saving demand in arid and semiarid regions. Our study aims to investigate quantitatively the change in crop yield, water-use efficiency (WUE) and nitrogen-use efficiency (NUE) under film mulching drip irrigation. We conducted a 4-year contrastive experiment containing two treatments on flux measurement: (1) border irrigation (BI) under film mulching; (2) drip irrigation (DI) under film mulching. Soil water and nitrate transport and utilization in the Soil–Plants–Atmosphere Continuum system, and crop dry matter were all simulated based on an integrated model of a soil-crop system: water, heat, carbon and nitrogen simulator (WHCNS). Results showed soil water content (SWC), soil NO3−-N content, evapotranspiration (ET), and crop dry matter (Wtotal) produced by the model were in agreement with those measured. Our study showed the irrigation and nitrogen input and output were significantly changed after BI was replaced by DI. Compared with BI treatment, DI treatment decreased ET consumption by 9% annually over four years, while it increased WUE and NUE on the farmland on average by about 28% and 39% yearly. The increase of WUE and NUE were mainly due to a significant decrease of about 56% and 68% in water and nitrogen leakage loss in DI treatment, respectively, during 2014–2017. Our study confirmed the economic and environmental benefits of the DI technology and showed its improvement prospect in the research field. Meanwhile, the results contributed to the improvement and more effective application of DI in a larger region, and provided a data basis for further study on water and fertilizer saving characteristics of DI technology.
Read full abstract