Abstract

Leucine-rich repeat-receptor-like kinases (LRR-RLKs) are major gene families that play an important role in in many aspects of plant growth and development particularly in the process of signal transmission. RLK XYLEM INTERMIXED WITH PHLOEM 1 (XIP1)/C-TERMINALLY ENCODED PEPTIDE (CEP) RECEPTOR 1 (CEPR1) has been identified as a leucine-rich repeat (LRR) receptor kinase. In this study, the MdCEPR1 gene (GenBank ID: DQ221207) from apple (Malus × domestica), was isolated and characterized. MdCEPR1 transcripts were highly accumulated in roots and leaves, and MdCEPR1 was significantly induced under low nitrate conditions. In addition, suppressing the MdCEPR1 gene in apple calli increased anthocyanin content. Overexpression of MdCEPR1 promoted growth of apple calli and Arabidopsis thaliana under low nitrate condition by increasing nitrate assimilation and up regulating the expression of genes involved in nitrate assimilation. Ectopic expression of MdCEPR1 also promoted lateral root development in transgenic Arabidopsis. Taken together, our results indicated that MdCEPR1 acts as a positive regulator of plant nitrate utilization and lateral root development. In this study, the MdCEPR1 gene from apple, was isolated and characterized, and our results indicated that MdCEPR1 acts as a positive regulator of plant nitrate utilization and lateral root development. MdCEPR1 may be a useful target for marker-assisted breeding to improve crop yield and reduce the use of chemical fertilizer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.