In our study, two high efficiency cellulose degrading strains were screened, isolated and identified as Cochliobolus kusanoi and Aspergillus puulaauensis by 18S rDNA gene sequencing. In addition, the composite microbial system was constructed to develop the synergistic effect among different strains. Under the optimum conditions, the yield of soluble dietary fiber from tea residues by mixed fermentation method (MF-SDF) dramatically increased compared to single strain fermentation. The structural analysis demonstrated that all samples possessed the representative infrared absorption peaks of polysaccharides, whereas MF-SDF revealed more loose structure, lower crystallinity and smaller molecular size. For the adsorption capacities indexes, MF-SDF also owned the highest adsorbing capacity for the water molecule, oil molecule, cholesterol molecule and nitrite ion. Overall, our data showed that mixed fermentation method could be better choices to improve the functional properties of dietary fiber, and screening of cellulose degrading strains could provide new thinkings for the study of dietary fiber modification and realize high-quality utilization of crop residues.
Read full abstract