Muscle mass deficits endure after hip fracture. Strategies to improve muscle quality may improve mobility and physical function. It is unknown whether training after usual care yields muscle quality gains after hip fracture. To determine whether muscle quality improves after hip fracture with high-intensity resistance training and protein supplementation. Case series. University of Utah Skeletal Muscle Exercise Research Facility. 17 community-dwelling older adults, 3.6+/-1.1 months post-hip fracture, recently discharged from usual-care physical therapy (mean age 77.0+/-12.0 years, 12 female), enrolled. Participants underwent 12 weeks (3x/week) of unilaterally-biased resistance training. Participants were measured via a 3.0 Tesla whole-body MR imager for muscle lean and intramuscular adipose tissue (IMAT) of the quadriceps before and after resistance training. Peak isometric knee extension force output was measured with an isokinetic dynamometer. Muscle quality was calculated by dividing peak isometric knee extension force (N) by quadriceps lean muscle mass (cm2). In addition, common physical function variables were measured before and after training. Surgical and nonsurgical lean quadriceps muscle mass improved among participants (mean change: 2.9 cm2+/-1.4 cm2, and 2.7 cm2+/-1.3 cm2, respectively), while IMAT remained unchanged. Peak force improved in the surgical limb by 43.1+/-23N, with no significant change in the nonsurgical limb. Significant gains in physical function were evident after training. Participants recovering from hip fracture demonstrated improvements in muscle mass, muscle strength, and muscle quality in the surgical limb after hip fracture. These were in addition to gains made in the first months after fracture with traditional care. Future studies should determine the impact that muscle quality has on long-term functional recovery in this population.
Read full abstract