The global adoption of electric vehicles (EVs) is gaining momentum as countries strive to achieve sustainable development goals. Establishing charging infrastructure is of paramount importance to promote increased EV usage. The cost and weight of the batteries are factors that reduce the sales volume and popularity of EVs. A dynamic charging system has also been developed to enhance the driving range of EVs and mitigate the need for heavy storage requirements. The energy demand of charging infrastructure is increasing day by day. Many countries are installing solar arrays along the roadside to meet the power demand of highway lighting applications and achieve sustainable development goal (SDG) 7. To further enhance this system, this manuscript proposes integrating PV technology with the dynamic charging system. The PV arrays and energy storage system (ESS) collaborate to power the dynamic charging system. A multi-leg inverter is employed to energize the charging couplers, while a resonant network improves the power transfer capability of the couplers. On the receiver side, a resonant network ensures the delivery of constant voltage and constant current by tuning the network topology. The 3.3 kW five-legged inverter is developed to energize the four double-D-shaped charging couplers. The common DC bus delivers 350 V to the inverter, and the charging system delivers 350 V, 8.85 A to the EV batteries.