Demand-response techniques are crucial for providing a proper quality of service under the paradigm of smart electricity grids. However, control strategies may perturb and cause discomfort to clients. This article proposes a methodology for defining an index to estimate the discomfort associated with an active demand management consisting of the interruption of domestic electric water heaters. Methods are applied to build the index include pattern detection for estimating the water utilization using an Extra Trees ensemble learning method and a linear model for water temperature, both based on analysis of real data. In turn, Monte Carlo simulations are applied to calculate the defined index. The proposed approach is evaluated over one real scenario and two simulated scenarios to validate that the thermal discomfort index correctly models the impact on temperature. The simulated scenarios consider a number of households using water heaters to analyze and compare the thermal discomfort index for different interruptions and the effect of using different penalty terms for deviations of the comfort temperature. The obtained results allow designing a proper management strategy to fairly decide which water heaters should be interrupted to guarantee the lower discomfort of users.
Read full abstract