Abstract

Objective and Background: Decades of research in the field of steady-state visual evoked potentials (SSVEPs) have revealed great potential of rhythmic light stimulation for brain-computer interfaces. Additionally, rhythmic light stimulation provides a non-invasive method for entrainment of oscillatory activity in the brain. Especially effective protocols enabling non-perceptible rhythmic stimulation and, thereby, reducing eye fatigue and user discomfort are favorable. Here, we investigate effects of (1) perceptible and (2) non-perceptible rhythmic light stimulation as well as attention-based effects of the stimulation by asking participants to focus (a) on the stimulation source directly in an overt attention condition or (b) on a cross-hair below the stimulation source in a covert attention condition. Method: SSVEPs at 10 Hz were evoked with a light-emitting diode (LED) driven by frequency-modulated signals and amplitudes of the current intensity either below or above a previously estimated individual threshold. Furthermore, we explored the effect of attention by asking participants to fixate on the LED directly in the overt attention condition and indirectly attend it in the covert attention condition. By measuring electroencephalography, we analyzed differences between conditions regarding the detection of reliable SSVEPs via the signal-to-noise ratio (SNR) and functional connectivity in occipito-frontal(-central) regions. Results: We could observe SSVEPs at 10 Hz for the perceptible and non-perceptible rhythmic light stimulation not only in the overt but also in the covert attention condition. The SNR and SSVEP amplitudes did not differ between the conditions and SNR values were in all except one participant above significance thresholds suggested by previous literature indicating reliable SSVEP responses. No difference between the conditions could be observed in the functional connectivity in occipito-frontal(-central) regions. Conclusion: The finding of robust SSVEPs even for non-intrusive rhythmic stimulation protocols below an individual perceptibility threshold and without direct fixation on the stimulation source reveals strong potential as a safe stimulation method for oscillatory entrainment in naturalistic applications.

Highlights

  • In the recent years, a rapidly growing number of studies investigated rhythmic light stimulation in order to evoke synchronized neuronal firing and, entrain brain activity

  • Using the state visual evoked potentials (SSVEPs) detection method suggested by Meigen and Bach (1999), all signal-to-noise ratio (SNR) values for the A-individual perceptibility threshold (IPT) stimulation in the covert and overt attention condition and for the B-IPT stimulation in the overt attention condition were above the suggested threshold of s = 2.82, p < 0.05, and mostly even above s = 8.40, p < 0.001 (Meigen and Bach, 1999)

  • We were interested whether reliable SSVEP responses and oscillatory entrainment can be evoked when (a) the stimulation source is indirectly attended with covert attention and (b) the flickering of the stimulation is below an individually estimated perceptibility threshold

Read more

Summary

Introduction

A rapidly growing number of studies investigated rhythmic light stimulation in order to evoke synchronized neuronal firing and, entrain brain activity Neurophysiological effects of such non-invasive brain stimulation can be investigated via the electroencephalography (EEG) and revealed great potential for brain–computer interface (BCI) applications due to their high signal-to-noise ratio (SNR; see Vialatte et al, 2010; Norcia et al, 2015 for reviews). Apart from regional modulations, Lithari et al (2016) observed distributed large-scale entrainment via graph theoretical measures in functional cortical networks They reported a frequency-unspecific reduction of density in the alpha band reflecting a disconnection of the visual cortex from the rest of the network. Thereby, the stimulation frequency and physical properties of the stimulation seem to play a significant role in shaping the extent of the functional connectivity profiles measured in response to the rhythmic stimulation (Srinivasan et al, 2007; Lithari et al, 2016)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.