Surface texturing can be defined as a technique that consists of creating micro cavities in the surface of a material. There are different texturing techniques such as chemical etching, electromechanical micromachining, diamond embossing, electric discharge, pellet-pressing and laser surface, the last being the most common. For years, these surface texturing techniques have been used in tribological applications because microcavities can store oils or fluids and constantly lubricate the surfaces that are subjected to wear; they can also be used to trap wear particles (debris) that would otherwise act as abrasive particles (three body abrasive wear). This literature review seeks to analyse and compare the advantages that the use of surface texturing techniques can offer in reducing the wear of prosthetic components and therefore lengthening their useful life, to provide a better quality of life to patients. The results of this review showed a growing interest in the scientific community in the use of surface texturing for biotribogical applications, using to a greater extent the Laser Surface Texturing (LST) technique and the surface pattern composed by dimples.