Abstract
Environmental legislation continues to drive optimisation of internal combustion engines in the automotive sector in an effort to reduce harmful emissions and promote fuel efficiency. Significant frictional losses occur at the ring pack, prompting research on reducing sliding friction at the ring – liner interface through the use of surface texturing. This study assesses the influence of contact area on the friction and wear behaviour of light-weight monolithic hyper-eutectic Al-Si alloy with a textured surface generated by electrochemical jet texturing. Flat rectangular samples were prepared from a cast cylinder liner via electro-discharge machining and flat lapped to 6 µm diamond finish prior to immersion in a 1 mol solution of NaOH for 120 s to simulate the mechanical honing process. Surfaces were electrochemically jet textured using a 2.3 mol solution of NaCl and current density of 220 A/cm2. An offset array of 1.3 × 0.3 mm rectangular features at 1.2 mm spacing was created with an average depth of 39 µm. Lubricated reciprocating sliding was carried out at a stroke length of 25 mm in a bath of PAO (4 cSt) at 100 °C against a 6 mm diameter, 13 mm long 52100 steel cylinder with three different contact areas corresponding to initial contact pressures of 157, 12 and 4 MPa. Sliding frequencies were varied between 1 and 15 Hz at a load of 50 N in order to establish the influence of both the contact pressure and velocity on the friction behaviour as a function of the lubrication regime. Textured features were observed to reduce the average coefficient of friction by up to 37% via a lubricant reservoir mechanism if the counter-surface contact width was greater than the feature dimension. Increases in contact pressure prevented a micro-EHL effect due to adhesive wear rather than pressurization of textured features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.