Coronary heart disease (CHD) is the leading cause of death in the United States, yet assessing risk of its development remains challenging. The present study evaluates a new automated assay of small dense low-density lipoprotein cholesterol content (sdLDL-C) and whether sdLDL-C is a risk factor for CHD compared with LDL-C or small LDL particle concentrations derived from nuclear magnetic resonance spectroscopy. sdLDL-C was measured using a new automated enzymatic method, and small LDL concentrations were obtained by nuclear magnetic resonance in 4387 Multi-Ethnic Study of Atherosclerosis participants. Cox regression analysis estimated hazard ratios for developing CHD for 8.5 years after adjustments for age, race, sex, systolic blood pressure, hypertension medication use, high-density lipoprotein cholesterol, and triglycerides. Elevated sdLDL-C was a risk factor for CHD in normoglycemic individuals. Those in the top sdLDL-C quartile showed higher risk of incident CHD (hazard ratio, 2.41; P=0.0037) compared with those in the bottom quartile and indicated greater CHD risk than the corresponding quartile of LDL-C (hazard ratio, 1.75; P=0.019). The association of sdLDL-C with CHD risk remained significant when LDL-C (<2.57 mmol/L) was included in a multivariate model (hazard ratio, 2.37; P=0.012). Nuclear magnetic resonance-derived small LDL concentrations did not convey a significant risk of CHD. Those with impaired fasting glucose or diabetes mellitus showed higher sdLDL-C and small LDL concentrations but neither was associated with higher CHD risk in these individuals. This new automated method for sdLDL-C identifies risk for CHD that would remain undetected using standard lipid measures, but only in normoglycemic, nondiabetic individuals.
Read full abstract