A new type of reactor designed for continuous halogen-assisted digestion and analysis of powdered samples was evaluated. Two different halogenating gas introduction methods were tested, as well as the use of an internal baffle to increase the residence time of the solids inside the reactor. Studies were carried out on Al 2O 3 and CuO as model compounds for optimization of the reactor's parameters, such as the carrier gas flow, the fraction of halogenating gas and the feed rate, using Freon-12 as the halogenating gas. A qualitative study of a pseudo fluidized bed reactor (PFBR) was also performed on a soil sample certified reference material (SO-4). The internal gas flow rate had to be kept to an absolute minimum in order to minimize cooling of the PFBR's inner walls. Pre-mixing of the halogenating reagent into the solid aerosol carrier resulted in a much more efficient reaction than separate flow introduction. The use of a baffle drastically improved the digestion efficiency by virtue of an increased solid residence time. The argon plasma did not have a sufficiently high heat transfer capability to ensure proper operation of the PFBR under continuous sample loading. The porosity of the graphite used for the PFBR construction caused some tailing and memory effects due to analyte seepage into the reactor's walls.