Abstract

This study evaluated nitrogen removal in Baffled Waste Stabilization Ponds (BWSPs) comprising laboratory and pilot-scale ponds with different number of baffles. The aim was to promote the waste stabilization pond practice for wastewater treatment in tropical countries by increasing nitrogen and organic carbon removal efficiency or reducing the land area requirement through the use of baffles which increased the biofilm biomass concentrations. The experiments started with a tracer study to find out the hydraulic characteristics of each pond. It was shown that the dispersion number decreased with increasing flow length and number of baffles which indicated more plug flow conditions. The deviation of actual HRT from theoretical HRT was computed and the flow pattern suggested the existence of an optimum spacing of baffles in BWSP units. The investigations further revealed that more than 65% TN and 90% NH3-N removal efficiencies were achieved at HRT of 5 days in a 6 baffled pond, which corresponds to the specific area of 34.88 m2/m3. TN and NH;-N removal increased with increasing number of baffles in the BWSP units. Combined algal/bacterial biofilm grown on the baffles immersed in the ponds showed potential for increasing the extent of nitrification. COD removal increased with higher number of baffles with its maximum removal efficiency at 6 baffles. Compared with normal WSP, BWSP gave higher TN, NH3-N, COD and BOD5 removal efficiency. The effluent SS concentrations from the laboratory-scale 6 baffled pond were less than 20 mg/L at HRT of 3 days or more.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call