BackgroundThis systematic review aims to assess how different urbanisation patterns related to rapid urban growth, unplanned expansion, and human population density affect the establishment and distribution of Aedes aegypti and Aedes albopictus and create favourable conditions for the spread of dengue, chikungunya, and Zika viruses.Methods and findingsFollowing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a systematic review was conducted using the PubMed, Virtual Health Library, Cochrane, WHO Library Database (WHOLIS), Google Scholar, and and the Institutional Repository for Information Sharing (IRIS) databases. From a total of 523 identified studies, 86 were selected for further analysis, and 29 were finally analysed after applying all inclusion and exclusion criteria. The main explanatory variables used to associate urbanisation with epidemiological/entomological outcomes were the following: human population density, urban growth, artificial geographical space, urban construction, and urban density. Associated with the lack of a global definition of urbanisation, several studies provided their own definitions, which represents one of the study’s limitations. Results were based on 8 ecological studies/models, 8 entomological surveillance studies, 7 epidemiological surveillance studies, and 6 studies consisting of spatial and predictive models. According to their focus, studies were categorised into 2 main subgroups, namely “Aedes ecology” and “transmission dynamics.” There was a consistent association between urbanisation and the distribution and density of Aedes mosquitoes in 14 of the studies and a strong relationship between vector abundance and disease transmission in 18 studies. Human population density of more than 1,000 inhabitants per square kilometer was associated with increased levels of arboviral diseases in 15 of the studies.ConclusionsThe use of different methods in the included studies highlights the interplay of multiple factors linking urbanisation with ecological, entomological, and epidemiological parameters and the need to consider a variety of these factors for designing effective public health approaches.