Urban flooding disasters are increasingly prevalent because of global climate change and urbanization. University campuses, as independent functional zones, exhibit complex rainfall–runoff dynamics. This study focuses on the China University of Geosciences, using data from two extremely heavy rainfall events and on-site waterlogging investigations in Wuhan in 2020 and 2021. A stormwater management model was employed to simulate campus catchment runoff and pipe network performance under rainstorm scenarios of various return periods, illustrating the spatial and temporal evolution of waterlogging on the campus. The simulation results indicate that the discharge at the main outlets aligned with rainfall patterns but exhibited a delayed response. During an overload period exceeding one hour, the ratios of overflow nodes and overloaded conduits reached 72.22% and 57.94%, respectively. Ponding was concentrated mainly in the southwest region of the campus, with the maximum ponding depth reaching 0.5 m. Future flood mitigation measures, such as enhancing permeable surfaces, upgrading pipeline infrastructure, and promoting rainwater reuse, could support the development of a “sponge campus” layout to alleviate flood pressure and enhance campus sustainability and resilience.
Read full abstract