Highly urbanized coastal ecosystems are vital in the global carbon budget. However, there are limited researches on carbon flux gradients in these nearshore areas, considering both natural and anthropogenic influences. Through on-site measurements and field samplings during wet-to-dry season in 2023, this study investigated spatial variations and factors affecting carbon fluxes, focusing on the impacts of salinity and eutrophic status in five geographically connected coastal waters of the Guangdong-Hong Kong-Macau Greater Bay Area (GBA). By estimating carbon exchange at land-sea-air interface, dominant processes in carbon dynamics were identified as well. Results showed that partial pressure of CO2 (pCO2) varied from 391 to 2290 μatm, and sea-air CO2 exchange fluxes (FCO2) ranged from -3.07 to 70.07 mmol m–2 d–1, indicating significant geographical distinctions among five coastal waters of the GBA. The total carbon transport from rivers to these nearshore waters was approximated at 6.44 Tg C yr-1, with the Pearl River (PR) contributing 99.7%, primarily in dissolved forms. Atmospheric CO2 release was calculated at 0.29 Tg C yr-1 for studied five coastal waters, primarily as carbon sources, except for Dapeng Bay (DPB) as a sink. CO2 emissions inversely correlated with salinity, yet positively with eutrophication status, particularly in river-dominated estuaries. Moreover, CO2 flux decreased 23 times as eco-status shift from eutrophic to non-eutrophic. River plumes, terrestrial pollutant inputs, and economic structure were underlying drivers, influencing carbon species concentrations and fluxes. Elevated CO2 concentrations in eutrophic coastal waters were mainly attributed to terrestrial carbon and nutrients inputs, supporting active biological respiration and microbial decomposition. Conversely, carbon dynamics potentially depend on the balance of respiration and photosynthesis in non-eutrophic coastal waters. This study offers high geographic precision and specificity of carbon species, and provides land-sea integration insight to understand carbon dynamic mechanisms, promoting advancements in water quality management and climate mitigation.
Read full abstract