A numerical solution of the unsteady boundary layer equations under similarity assumptions is obtained. The solution represents the three-dimensional unsteady fluid motion caused by the time-dependent stretching of a flat boundary. It has been shown that a self-similar solution exists when either the rate of stretching is decreasing with time or it is constant. Three different numerical techniques are applied and a comparison is made among them as well as with earlier results. Analysis is made for various situations like deceleration in stretching of the boundary, mass transfer at the surface, saddle and nodal point flows, and the effect of a magnetic field. Both the constant temperature and constant heat flux conditions at the wall have been studied.
Read full abstract