In a variety of applications where the electronic and optical characteristics of traditional, siliconbased materials are inadequate, recently researchers have employed semiconductors made from combinations of group III and V elements such as InAs. InAs has a narrow band gap and very high electron mobility in the near-surface region, which makes it an attractive material for high performance transistors, optical applications, and chemical sensing. However, silicon-based materials remain the top semiconductors of choice for biological applications, in part because of their relatively low toxicity. In contrast to silicon, InAs forms an unstable oxide layer under ambient conditions, which can corrode over time and leach toxic indium and arsenic components. To make InAs more attractive for biological applications, researchers have investigated passivation, chemical and electronic stabilization, of the surface by adlayer adsorption. Because of the simplicity, low cost, and flexibility in the type of passivating molecule used, many researchers are currently exploring wet-chemical methods of passivation. This Account summarizes much of the recent work on the chemical passivation of InAs with a particular focus on the chemical stability of the surface and prevention of oxide regrowth. We review the various methods of surface preparation and discuss how crystal orientation affects the chemical properties of the surface. The correct etching of InAs is critical as researchers prepare the surface for subsequent adlayer adsorption. HCl etchants combined with a postetch annealing step allow the tuning of the chemical properties in the near-surface region to either arsenic- or indium-rich environments. Bromine etchants create indium-rich surfaces and do not require annealing after etching; however, bromine etchants are harsh and potentially destructive to the surface. The simultaneous use of NH(4)OH etchants with passivating molecules prevents contact with ambient air that can occur during sample transfer between solutions. The passivation of InAs is dominated by sulfur-based molecules, which form stable In-S bonds on the InAs surface. Both sulfides and alkanethiols form well-defined monolayers on InAs and are dominated by In-S interactions. Sulfur-passivated InAs surfaces prevent regrowth of the surface oxide layer and are more stable in air than unpassivated surfaces. Although functionalization of InAs with sulfur-based molecules effectively passivates the surface, future sensing applications may require the adsorption of functional biomolecules onto the InAs surface. Current research in this area focuses on the passivation abilities of biomolecules such as collagen binding peptides and amino acids. These biomolecules can physically adsorb onto InAs, and they demonstrate some passivation ability but not to the extent of sulfur-based molecules. Because these adsorbents do not form covalent bonds with the InAs surface, they do not effectively block oxide regrowth. A mixed adlayer containing a biomolecule and a thiol on the InAs surface provides one possible solution: these hybrid surfaces enhance passivation but also maintain the presence of a biomolecule on the surface. Such surface functionalization strategies on InAs could provide long-term stability and make these surfaces suitable for biological applications.