Abstract

New insights are presented on the speciation of surface oxide phases on fine inert gas atomised (GA, <45 and <4 μm) and water atomised (WA, <45 μm) stainless steel AISI 316L powders. X-ray photoelectron and Auger electron spectroscopy, scanning electron microscopy, Raman spectroscopy, and cyclic voltammetry were applied for the characterisation. Oxidised manganese was strongly enriched in the outermost surface oxide of the GA powders (13 and 47 wt-%), an effect increasing with reduced particle size. Manganese and sulphur were enriched in oxide nanoparticles on the surface. Oxidised silicon (59 wt-%) was enriched on the WA powder surface. Tri- or tetravalent manganese oxides were observed on the GA particles in addition to α-Fe2O3, and Cr2O3. The oxide of the WA powder revealed in addition the likely presence of a silicate rich phase, mainly consisting of tetravalent Si, di- and/or trivalent Fe, and hexavalent Cr, which was confirmed not present as chromate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.