Rotors supported by journal bearings may become unstable due to self-excited vibrations when a critical rotor speed is exceeded. Linearised analysis is usually used to determine the stability boundaries. Non-linear bifurcation theory or numerical integration is required to predict stable or unstable periodic oscillations close to the critical speed. In this paper, a dynamic model of a short journal bearing is used to analyse the bifurcation of the steady state equilibrium point of the journal centre. Numerical continuation is applied to determine stable or unstable limit cycles bifurcating from the equilibrium point at the critical speed. Under certain working conditions, limit cycles themselves are shown to disappear beyond a certain rotor speed and to exhibit a fold bifurcation giving birth to unstable limit cycles surrounding the stable supercritical limit cycles. Numerical integration of the system of equations is used to support the results obtained by numerical continuation. Numerical simulation permitted a partial validation of the analytical investigation.